If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+2x-26=0
a = 2; b = 2; c = -26;
Δ = b2-4ac
Δ = 22-4·2·(-26)
Δ = 212
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{212}=\sqrt{4*53}=\sqrt{4}*\sqrt{53}=2\sqrt{53}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{53}}{2*2}=\frac{-2-2\sqrt{53}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{53}}{2*2}=\frac{-2+2\sqrt{53}}{4} $
| 4m-7/8=1/2 | | 5m=3m+40 | | 4/5p(40-p)=0 | | 6d=3d+12 | | -4(t+16)=8 | | 21.8x=-124.28 | | (7x+10)-(-6x-8)= | | 7(2–c)=3(c+8) | | 5(b-3)=-15 | | w+16/15=2 | | 3×(x-5)+2×(2x-4)=x-1 | | 180=7x-3(-6x+11) | | q/14+15=16 | | 7(-10-2x)=-238 | | v-2/5=-9 | | 3(q+1)=12 | | 2.2t-3=-31.2 | | -2(v)=9=25 | | 15-2y=7y | | b+5/17=-1 | | 42+9y+4=-10 | | 103+42+x=180 | | d/2+9=10 | | 4x-2-7x=119 | | 11=18+8f | | 65+x+x=128 | | 10(b+2)=20 | | 109+42+x=180 | | q/9+5=10 | | 10x+5-2x=3x+25 | | 4=t/2.5 | | 4u+19=-1 |